
COMPSCI 389
Introduction to Machine Learning

Days: Tu/Th. Time: 2:30 – 3:45 Building: Morrill 2 Room: 222

Topic 5.5: Validation Sets (and Review of NN Variants and Model Evaluation)
Prof. Philip S. Thomas (pthomas@cs.umass.edu)

Nearest Neighbors (NN)

• Given a query, find the label associated with the closest point in
the training data.

• “Closest” is determined using Euclidean distance:

dist 𝑥𝑥, 𝑥𝑥′ = �
𝑖𝑖=1

𝑛𝑛

𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖′
2

• If multiple points equally near, break ties arbitrarily.
• For example, return the label of just one of the nearest neighbors.

K-Nearest Neighbors (k-NN)

• NN was unreasonable when many points are equally close but
have different labels.

• NN is also unreasonable when many points are close to the query
(but not precisely equal in distance).

• k-NN improves upon NN by returning the average of the labels of
the k nearest neighbors.

• Data structures like KD-Trees and Ball-Trees can be used to efficiently find
the k nearest neighbors to a query point.

Weighted k-Nearest Neighbors (Weighted k-NN)

• The k-NN algorithm does not distinguish between the cases:
• All k neighbors are roughly the same distance from the query.
• Some of the k neighbors are much closer than others.

• Instead, it gives the same weight to all k neighbors.
• Weighted k-NN weights each of the k points based on their

distance:

�𝑦𝑦 = �
𝑖𝑖=1

𝑘𝑘
𝑤𝑤𝑖𝑖

∑𝑗𝑗=1𝑘𝑘 𝑤𝑤𝑗𝑗
𝑦𝑦𝑖𝑖𝑁𝑁𝑁𝑁

𝑖𝑖th nearest
neighbor’s label

Weighted k-NN (cont.)

• Many choices of weighting functions.
• One common choice is the Gaussian kernel:

𝑤𝑤𝑖𝑖 = 𝑒𝑒−
dist 𝑥𝑥𝑖𝑖

𝑁𝑁𝑁𝑁, 𝑥𝑥query
2

2𝜎𝜎2

• Sigma scales how quickly weights decrease with distance.

𝑖𝑖th nearest neighbor’s features

Query features

Tuning Hyperparameters

• Hyperparameter: a variable, like k, that changes the behavior of
the algorithm, and which is often set by the data scientist applying
the algorithm.

• Grid Search: Specify possible values for each hyperparameter
(often equally spaced), train models using all possible
combinations of hyperparameter settings, and select the ones
that result in the best fit.

Classification with NN-Variants

• NN: No changes needed!
• k-NN: The predicted label comes from a majority vote of the k

nearest neighbors.
• Weighted k-NN: Each neighbor’s vote is weighted in the vote.

• Note: We will focus on regression for a while, and then return to
classification after a few lectures.

Confidence Intervals

• We shouldn’t always trust the sample performance metrics.
• Sample MSE: 1

𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑦𝑦𝑖𝑖 − �𝑦𝑦𝑖𝑖 2

• This is a statistic or sample statistic.
• It could be quite different from the true MSE: 𝐄𝐄 𝑌𝑌 − �𝑌𝑌 2

.
• This is a parameter or population statistic.

• We can compute confidence intervals for sample statistics.
• If the sample statistic is an average (of normally distributed values) then

± 1.96 × SE is a 95% confidence interval.
• SE is the standard error: 𝑆𝑆𝑆𝑆 = 𝜎𝜎

𝑛𝑛
, where 𝜎𝜎 is the sample standard deviation with Bessel’s

correction.
• We often report performance metrics with ±𝑋𝑋, where X is standard

error, 1.96 times standard error, a 95% or 90% confidence interval, or
standard deviation.

Model Evaluation

• We can evaluate models trained on the training data by:
• Compute the sample MSE (or metric of interest) on the test set.
• Compute a confidence interval (or related quantity) for the sample MSE.
• Check whether one model’s high-confidence lower-bound is larger than

another model’s high-confidence upper bound.

Sample MSE, Model A

Sample MSE, Model B

Cannot conclude that Model A is
better than Model B with
sufficient confidence.

Model Evaluation

• We can evaluate models trained on the training data by:
• Compute the sample MSE (or metric of interest) on the test set.
• Compute a confidence interval (or related quantity) for the sample MSE.
• Check whether one model’s high-confidence lower-bound is larger than

another model’s high-confidence upper bound.

Sample MSE, Model A

Sample MSE, Model B

Can conclude that Model A is
better than Model B with
sufficient confidence.

Algorithm Evaluation

• Consider the following:
• Train model A using one algorithm.
• Train model B using another algorithm.
• Evaluate models A and B using confidence intervals.

• This does not fully evaluate the two algorithms.
• It fails to capture how much the learned models vary with different

training sets.

K-Fold Cross-Validation

• Split data D into k equal-sized subsets (folds), F1, F2, …, Fk
• For i from 1 to k:

• Set aside fold Fi as the validation set, and combine the remaining k-1
folds to form a training set.

• Train the model M on the k-1 training folds using the ML algorithm being
evaluated.

• Evaluate the performance of model M on the validation fold Fi. Store the
performance metric Pi

• Calculate the average performance metric: mean(P1,P2, …, Pk).
• Optionally, calculate other statistics (like standard error) of the

performance metrics across the folds.

Train/Validation/Test Sets (New Material!)

• Validation sets are often used to automatically tune
hyperparameters.

• The data is split into three sets: train, evaluation, and test. The
following procedure is then used:

• For each hyperparameter setting:
• Train a model using the training data.
• Evaluate the model using the validation data.

• Select the hyperparameter settings that achieve the best evaluation on
the validation set.

• Train a model using all the training and validation data and the
hyperparameters that achieved the best evaluation.

• Evaluate the model using the testing set.

Nested Cross-Validation:
Train/Test/Validation + k-Fold Cross-Validation
• Train/Test/Validation does not account for the variance that

results from the selection of the training and validation sets.
• It evaluates the performance of the one model learned from a specific

pair of training and validation sets.

• The use of train/validation/test sets can be combined with k-fold
cross-validation to account for this additional variance.

• This method is called nested cross-validation.
• While principled, this method is computationally intensive.
• For this introductory course you should understand the general idea

behind nested cross-validation, but need not study the algorithmic
details.

End

	COMPSCI 389�Introduction to Machine Learning
	Nearest Neighbors (NN)
	K-Nearest Neighbors (k-NN)
	Weighted k-Nearest Neighbors (Weighted k-NN)
	Weighted k-NN (cont.)
	Tuning Hyperparameters
	Classification with NN-Variants
	Confidence Intervals
	Model Evaluation
	Model Evaluation
	Algorithm Evaluation
	K-Fold Cross-Validation
	Train/Validation/Test Sets (New Material!)
	Nested Cross-Validation: �Train/Test/Validation + k-Fold Cross-Validation
	End

