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Nearest Neighbors (NN)

• Given a query, find the label associated with the closest point in 
the training data.

• “Closest” is determined using Euclidean distance:
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• If multiple points equally near, break ties arbitrarily.
• For example, return the label of just one of the nearest neighbors.



K-Nearest Neighbors (k-NN)

• NN was unreasonable when many points are equally close but 
have different labels.

• NN is also unreasonable when many points are close to the query 
(but not precisely equal in distance).

• k-NN improves upon NN by returning the average of the labels of 
the k nearest neighbors.

• Data structures like KD-Trees and Ball-Trees can be used to efficiently find 
the k nearest neighbors to a query point.



Weighted k-Nearest Neighbors (Weighted k-NN)

• The k-NN algorithm does not distinguish between the cases:
• All k neighbors are roughly the same distance from the query.
• Some of the k neighbors are much closer than others.

• Instead, it gives the same weight to all k neighbors.
• Weighted k-NN weights each of the k points based on their 

distance: 
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Weighted k-NN (cont.)

• Many choices of weighting functions.
• One common choice is the Gaussian kernel:
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• Sigma scales how quickly weights decrease with distance.

𝑖𝑖th nearest neighbor’s features

Query features



Tuning Hyperparameters

• Hyperparameter: a variable, like k, that changes the behavior of 
the algorithm, and which is often set by the data scientist applying 
the algorithm.

• Grid Search: Specify possible values for each hyperparameter 
(often equally spaced), train models using all possible 
combinations of hyperparameter settings, and select the ones 
that result in the best fit.



Classification with NN-Variants

• NN: No changes needed!
• k-NN: The predicted label comes from a majority vote of the k 

nearest neighbors.
• Weighted k-NN: Each neighbor’s vote is weighted in the vote.

• Note: We will focus on regression for a while, and then return to 
classification after a few lectures.



Confidence Intervals

• We shouldn’t always trust the sample performance metrics.
• Sample MSE: 1
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• This is a statistic or sample statistic.
• It could be quite different from the true MSE: 𝐄𝐄 𝑌𝑌 − �𝑌𝑌 2

.
• This is a parameter or population statistic.

• We can compute confidence intervals for sample statistics.
• If the sample statistic is an average (of normally distributed values) then 

± 1.96 × SE is a 95% confidence interval.
• SE is the standard error: 𝑆𝑆𝑆𝑆 = 𝜎𝜎

𝑛𝑛
, where 𝜎𝜎 is the sample standard deviation with Bessel’s 

correction.
• We often report performance metrics with ±𝑋𝑋, where X is standard 

error, 1.96 times standard error, a 95% or 90% confidence interval, or 
standard deviation.



Model Evaluation

• We can evaluate models trained on the training data by:
• Compute the sample MSE (or metric of interest) on the test set.
• Compute a confidence interval (or related quantity) for the sample MSE.
• Check whether one model’s high-confidence lower-bound is larger than 

another model’s high-confidence upper bound.

Sample MSE, Model A

Sample MSE, Model B

Cannot conclude that Model A is 
better than Model B with 
sufficient confidence.



Model Evaluation

• We can evaluate models trained on the training data by:
• Compute the sample MSE (or metric of interest) on the test set.
• Compute a confidence interval (or related quantity) for the sample MSE.
• Check whether one model’s high-confidence lower-bound is larger than 

another model’s high-confidence upper bound.

Sample MSE, Model A

Sample MSE, Model B

Can conclude that Model A is 
better than Model B with 
sufficient confidence.



Algorithm Evaluation

• Consider the following:
• Train model A using one algorithm.
• Train model B using another algorithm.
• Evaluate models A and B using confidence intervals.

• This does not fully evaluate the two algorithms.
• It fails to capture how much the learned models vary with different 

training sets.



K-Fold Cross-Validation

• Split data D into k equal-sized subsets (folds), F1, F2, …, Fk
• For i from 1 to k:

• Set aside fold Fi as the validation set, and combine the remaining k-1 
folds to form a training set.

• Train the model M on the k-1 training folds using the ML algorithm being 
evaluated.

• Evaluate the performance of model M on the validation fold Fi. Store the 
performance metric Pi

• Calculate the average performance metric: mean(P1,P2, …, Pk).
• Optionally, calculate other statistics (like standard error) of the 

performance metrics across the folds.



Train/Validation/Test Sets (New Material!)

• Validation sets are often used to automatically tune 
hyperparameters.

• The data is split into three sets: train, evaluation, and test. The 
following procedure is then used:

• For each hyperparameter setting:
• Train a model using the training data.
• Evaluate the model using the validation data.

• Select the hyperparameter settings that achieve the best evaluation on 
the validation set.

• Train a model using all the training and validation data and the 
hyperparameters that achieved the best evaluation.

• Evaluate the model using the testing set.



Nested Cross-Validation: 
Train/Test/Validation + k-Fold Cross-Validation
• Train/Test/Validation does not account for the variance that 

results from the selection of the training and validation sets.
• It evaluates the performance of the one model learned from a specific 

pair of training and validation sets.

• The use of train/validation/test sets can be combined with k-fold 
cross-validation to account for this additional variance.

• This method is called nested cross-validation.
• While principled, this method is computationally intensive.
• For this introductory course you should understand the general idea 

behind nested cross-validation, but need not study the algorithmic 
details.
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